REVISITING THE JONES EIGENPROBLEM IN FLUID-STRUCTURE INTERACTION

Dominguez, Sebastian; Nigam, Nilima A.; Sun, Jiguang

Abstract

The Jones eigenvalue problem first described in [D. S. Jones, Quart. T. Mech. Appl. Math., 36 (1983), pp. 111-138] concerns unusual modes in bounded elastic bodies-time-harmonic displacements whose tractions and normal components are both identically zero on the boundary. This problem is usually associated with a lack of unique solvability for certain models of fluidstructure interaction. The boundary conditions in this problem appear, at first glance, to rule out any nontrivial modes unless the domain possesses significant geometric symmetries. Indeed, Jones modes were shown to not be possible in most C-infinity domains in [T. Harge, C. R. Acad. Sci. Paris Ser. I Math., 311 (1990), pp. 857-859]. However, in this paper we will see that while the existence of Jones modes sensitively depends on the domain geometry, such modes do exist in a broad class of domains. This paper presents the first detailed theoretical and computational investigation of this eigenvalue problem in Lipschitz domains. We also analytically demonstrate Jones modes on some simple geometries.

Más información

Título según WOS: ID WOS:000546818400009 Not found in local WOS DB
Título de la Revista: SIAM JOURNAL ON APPLIED MATHEMATICS
Volumen: 79
Número: 6
Editorial: SIAM PUBLICATIONS
Fecha de publicación: 2019
Página de inicio: 2385
Página final: 2408
DOI:

10.1137/18M1198235

Notas: ISI