A combined finite element and Bayesian optimization framework for shape optimization in spectral geometry
Abstract
We present a novel computational framework for shape optimization problems arising in spectral geometry. The goal in such problems is to identify domains in R-d which are the global optima of certain functions of the spectrum of elliptic operators on the domains. We propose the use of a combined finite element and Bayesian optimization (FEM-BO) framework in this context, and demonstrate the key ideas on two concrete examples. We study the Polya-Szego conjecture on polygons, and demonstrate that our proposed framework yields the theoretically proven result for triangles and quadrilaterals, and also provides compelling numerical evidence for the case of pentagons. We next study a variant of this conjecture for the Steklov eigenvalue problem. Crown Copyright (C) 2017 Published by Elsevier Ltd. All rights reserved.
Más información
Título según WOS: | ID WOS:000418980800016 Not found in local WOS DB |
Título de la Revista: | COMPUTERS & MATHEMATICS WITH APPLICATIONS |
Volumen: | 74 |
Número: | 11 |
Editorial: | PERGAMON-ELSEVIER SCIENCE LTD |
Fecha de publicación: | 2017 |
Página de inicio: | 2874 |
Página final: | 2896 |
DOI: |
10.1016/j.camwa.2017.08.044 |
Notas: | ISI |