Functionalization of Gold Nanostars with Cationic beta-Cyclodextrin-Based Polymer for Drug Co-Loading and SERS Monitoring

Donoso-Gonzalez, Orlando; Lodeiro, Lucas; Aliaga, Alvaro E.; Laguna-Bercero, Miguel A.; Bollo, Soledad; Kogan, Marcelo J.; Yutronic, Nicolas; Sierpe, Rodrigo

Abstract

Gold nanostars (AuNSs) exhibit modulated plasmon resonance and have a high SERS enhancement factor. However, their low colloidal stability limits their biomedical application as a nanomaterial. Cationic beta-cyclodextrin-based polymer (CCD/P) has low cytotoxicity, can load and transport drugs more efficiently than the corresponding monomeric form, and has an appropriate cationic group to stabilize gold nanoparticles. In this work, we functionalized AuNSs with CCD/P to load phenylethylamine (PhEA) and piperine (PIP) and evaluated SERS-based applications of the products. PhEA and PIP were included in the polymer and used to functionalize AuNSs, forming a new AuNS-CCD/P-PhEA-PIP nanosystem. The system was characterized by UV-VIS, IR, and NMR spectroscopy, TGA, SPR, DLS, zeta potential analysis, FE-SEM, and TEM. Additionally, Raman optical activity, SERS analysis and complementary theoretical studies were used for characterization. Minor adjustments increased the colloidal stability of AuNSs. The loading capacity of the CCD/P with PhEA-PIP was 95 +/- 7%. The physicochemical parameters of the AuNS-CCD/P-PhEA-PIP system, such as size and Z potential, are suitable for potential biomedical applications Raman and SERS studies were used to monitor PhEA and PIP loading and their preferential orientation upon interaction with the surface of AuNSs. This unique nanomaterial could be used for simultaneous drug loading and SERS-based detection.

Más información

Título según WOS: Functionalization of Gold Nanostars with Cationic beta-Cyclodextrin-Based Polymer for Drug Co-Loading and SERS Monitoring
Título de la Revista: PHARMACEUTICS
Volumen: 13
Número: 2
Editorial: MDPI
Fecha de publicación: 2021
DOI:

10.3390/PHARMACEUTICS13020261

Notas: ISI