Bin packing in multiple dimensions: Inapproximability results and approximation schemes

Bansal N.; Correa JR; Kenyon, C; Sviridenko, M

Abstract

We study the following packing problem: Given a collection of d-dimensional rectangles of specified sizes, pack them into the minimum number of unit cubes. We show that unlike the one-dimensional case, the two-dimensional packing problem cannot have an asymptotic polynomial time approximation scheme (APTAS). unless P = NP. On the positive side, we give an APTAS for the special case of packing d-dimensional cubes into the minimum number of unit cubes. Second, we give a polynomial time algorithm for packing arbitrary two-dimensional rectangles into at most OPT square bins with sides of length 1 + ε, where OPT denotes the minimum number of unit bins required to pack these rectangles. Interestingly, this result has no additive constant term, i.e., is not an asymptotic result. As a corollary, we obtain the first approximation scheme for the problem of placing a collection of rectangles in a minimum-area encasing rectangle. © 2006 INFORMS.

Más información

Título según WOS: Bin packing in multiple dimensions: Inapproximability results and approximation schemes
Título según SCOPUS: Bin packing in multiple dimensions: Inapproximability results and approximation schemes
Título de la Revista: MATHEMATICS OF OPERATIONS RESEARCH
Volumen: 31
Número: 1
Editorial: INFORMS
Fecha de publicación: 2006
Página de inicio: 31
Página final: 49
Idioma: English
URL: http://pubsonline.informs.org/doi/abs/10.1287/moor.1050.0168
DOI:

10.1287/moor.1050.0168

Notas: ISI, SCOPUS