Bin packing in multiple dimensions: Inapproximability results and approximation schemes
Abstract
We study the following packing problem: Given a collection of d-dimensional rectangles of specified sizes, pack them into the minimum number of unit cubes. We show that unlike the one-dimensional case, the two-dimensional packing problem cannot have an asymptotic polynomial time approximation scheme (APTAS). unless P = NP. On the positive side, we give an APTAS for the special case of packing d-dimensional cubes into the minimum number of unit cubes. Second, we give a polynomial time algorithm for packing arbitrary two-dimensional rectangles into at most OPT square bins with sides of length 1 + ε, where OPT denotes the minimum number of unit bins required to pack these rectangles. Interestingly, this result has no additive constant term, i.e., is not an asymptotic result. As a corollary, we obtain the first approximation scheme for the problem of placing a collection of rectangles in a minimum-area encasing rectangle. © 2006 INFORMS.
Más información
Título según WOS: | Bin packing in multiple dimensions: Inapproximability results and approximation schemes |
Título según SCOPUS: | Bin packing in multiple dimensions: Inapproximability results and approximation schemes |
Título de la Revista: | MATHEMATICS OF OPERATIONS RESEARCH |
Volumen: | 31 |
Número: | 1 |
Editorial: | INFORMS |
Fecha de publicación: | 2006 |
Página de inicio: | 31 |
Página final: | 49 |
Idioma: | English |
URL: | http://pubsonline.informs.org/doi/abs/10.1287/moor.1050.0168 |
DOI: |
10.1287/moor.1050.0168 |
Notas: | ISI, SCOPUS |