L-q dimensions and projections of random measures
Abstract
We prove preservation of L-q dimensions (for 1 q = 2) under all orthogonal projections for a class of random measures on the plane, which includes (deterministic) homogeneous self-similar measures and a well-known family of measures supported on 1-variable fractals as special cases. We prove a similar result for certain convolutions, extending a result of Nazarov, Peres and Shmerkin. Recently many related results have been obtained for Hausdorff dimension, but much less is known for L-q dimensions.
Más información
| Título según WOS: | ID WOS:000383977100004 Not found in local WOS DB |
| Título de la Revista: | NONLINEARITY |
| Volumen: | 29 |
| Número: | 9 |
| Editorial: | IOP PUBLISHING LTD |
| Fecha de publicación: | 2016 |
| Página de inicio: | 2609 |
| Página final: | 2640 |
| DOI: |
10.1088/0951-7715/29/9/2609 |
| Notas: | ISI |