Metastability for small random perturbations of a PDE with blow-up
Abstract
We study random perturbations of a reaction-diffusion equation with a unique stable equilibrium and solutions that blow-up in finite time. If the strength of the perturbation epsilon > 0 is small and the initial data is in the domain of attraction of the stable equilibrium, the system exhibits metastable behavior: its time averages remain stable around this equilibrium until an abrupt and unpredictable transition occurs which leads to explosion in a finite time (but exponentially large in epsilon(-2)). Moreover, for initial data in the domain of explosion we show that the explosion times converge to the one of the deterministic solution. (C) 2017 Elsevier B.V. All rights reserved.
Más información
Título según WOS: | ID WOS:000430517900005 Not found in local WOS DB |
Título de la Revista: | STOCHASTIC PROCESSES AND THEIR APPLICATIONS |
Volumen: | 128 |
Número: | 5 |
Editorial: | Elsevier |
Fecha de publicación: | 2018 |
Página de inicio: | 1558 |
Página final: | 1589 |
DOI: |
10.1016/j.spa.2017.08.005 |
Notas: | ISI |