On the principal eigenvalues and the Dirichlet problem for fully nonlinear operators

Quaas, A; Sirakov, B

Abstract

We study uniformly elliptic fully nonlinear equations of the type F (D2u, Du, u, x) = f (x). We - show that convex positively 1-ho mogeneous operators possess two principal eigenvalues and eigenfunctions, and study these objects; - obtain existence and uniqueness results for non-proper operators whose principal eigenvalues (in some cases, only one of them) are positive; - obtain an existence result for non-proper Isaac's equations. © 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Más información

Título según WOS: On the principal eigenvalues and the Dirichlet problem for fully nonlinear operators
Título según SCOPUS: On the principal eigenvalues and the Dirichlet problem for fully nonlinear operators Sur les valuers propres et le problème de Dirichlet pour des opérateurs complètement non-linéaires
Título de la Revista: COMPTES RENDUS MATHEMATIQUE
Volumen: 342
Número: 2
Editorial: ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
Fecha de publicación: 2006
Página de inicio: 115
Página final: 118
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S1631073X05005200
DOI:

10.1016/j.crma.2005.11.003

Notas: ISI, SCOPUS