On the principal eigenvalues and the Dirichlet problem for fully nonlinear operators
Abstract
We study uniformly elliptic fully nonlinear equations of the type F (D2u, Du, u, x) = f (x). We - show that convex positively 1-ho mogeneous operators possess two principal eigenvalues and eigenfunctions, and study these objects; - obtain existence and uniqueness results for non-proper operators whose principal eigenvalues (in some cases, only one of them) are positive; - obtain an existence result for non-proper Isaac's equations. © 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Más información
| Título según WOS: | On the principal eigenvalues and the Dirichlet problem for fully nonlinear operators |
| Título según SCOPUS: | On the principal eigenvalues and the Dirichlet problem for fully nonlinear operators Sur les valuers propres et le problème de Dirichlet pour des opérateurs complètement non-linéaires |
| Título de la Revista: | COMPTES RENDUS MATHEMATIQUE |
| Volumen: | 342 |
| Número: | 2 |
| Editorial: | ACAD SCIENCES |
| Fecha de publicación: | 2006 |
| Página de inicio: | 115 |
| Página final: | 118 |
| Idioma: | English |
| URL: | http://linkinghub.elsevier.com/retrieve/pii/S1631073X05005200 |
| DOI: |
10.1016/j.crma.2005.11.003 |
| Notas: | ISI, SCOPUS |