Very regular high-frequency pulsation modes in young intermediate-mass stars

Bedding, Timothy R.; Murphy, Simon J.; Hey, Daniel R.; Huber, Daniel; Li, Tanda; Smalley, Barry; Stello, Dennis; White, Timothy R.; Ball, Warrick H.; Chaplin, William J.; Colman, Isabel L.; Fuller, Jim; Gaidos, Eric; Harbeck, Daniel R.; Hermes, J. J.; et. al.

Abstract

Asteroseismology probes the internal structures of stars by using their natural pulsation frequencies(1). It relies on identifying sequences of pulsation modes that can be compared with theoretical models, which has been done successfully for many classes of pulsators, including low-mass solar-type stars(2), red giants(3), high-mass stars(4) and white dwarfs(5). However, a large group of pulsating stars of intermediate mass-the so-called delta Scuti stars-have rich pulsation spectra for which systematic mode identification has not hitherto been possible(6,7). This arises because only a seemingly random subset of possible modes are excited and because rapid rotation tends to spoil regular patterns(8-10). Here we report the detection of remarkably regular sequences of high-frequency pulsation modes in 60 intermediate-mass main-sequence stars, which enables definitive mode identification. The space motions of some of these stars indicate that they are members of known associations of young stars, as confirmed by modelling of their pulsation spectra. The pulsation spectra of intermediate-mass stars (so-called delta Scuti stars) have been challenging to analyse, but new observations of 60 such stars reveal remarkably regular sequences of high-frequency pulsation modes.

Más información

Título según WOS: ID WOS:000532836000024 Not found in local WOS DB
Título de la Revista: NATURE
Volumen: 581
Número: 7807
Editorial: NATURE PORTFOLIO
Fecha de publicación: 2020
Página de inicio: 147
Página final: +
DOI:

10.1038/s41586-020-2226-8

Notas: ISI