On the spectral properties of non-selfadjoint discrete Schrodinger operators

Bourget, Olivier; Sambou, Diomba

Abstract

Let H-0 be a purely absolutely continuous selfadjoint operator acting on some separable infinite-dimensional Hilbert space and V be a compact perturbation. We relate the regularity properties of V to various spectral properties of the perturbed operator H-0 + V. The structures of the discrete spectrum and the embedded eigenvalues are analyzed jointly with the existence of limiting absorption principles in a unified framework. Our results are based on a suitable combination of complex scaling techniques, resonance theory and positive commutators methods. Various results scattered throughout the literature are recovered and extended. For illustrative purposes, the case of the one-dimensional discrete Laplacian is emphasized. (C) 2020 Elsevier Masson SAS. All rights reserved.

Más información

Título según WOS: ID WOS:000560375700001 Not found in local WOS DB
Título de la Revista: JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES
Volumen: 141
Editorial: ELSEVIER SCIENCE BV
Fecha de publicación: 2020
Página de inicio: 1
Página final: 49
DOI:

10.1016/j.matpur.2020.07.009

Notas: ISI