On the spectral properties of non-selfadjoint discrete Schrodinger operators
Abstract
Let H-0 be a purely absolutely continuous selfadjoint operator acting on some separable infinite-dimensional Hilbert space and V be a compact perturbation. We relate the regularity properties of V to various spectral properties of the perturbed operator H-0 + V. The structures of the discrete spectrum and the embedded eigenvalues are analyzed jointly with the existence of limiting absorption principles in a unified framework. Our results are based on a suitable combination of complex scaling techniques, resonance theory and positive commutators methods. Various results scattered throughout the literature are recovered and extended. For illustrative purposes, the case of the one-dimensional discrete Laplacian is emphasized. (C) 2020 Elsevier Masson SAS. All rights reserved.
Más información
| Título según WOS: | ID WOS:000560375700001 Not found in local WOS DB |
| Título de la Revista: | JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES |
| Volumen: | 141 |
| Editorial: | Elsevier |
| Fecha de publicación: | 2020 |
| Página de inicio: | 1 |
| Página final: | 49 |
| DOI: |
10.1016/j.matpur.2020.07.009 |
| Notas: | ISI |