Powers of Brownian Green Potentials
Abstract
In this article we study stability properties of g(O), the standard Green kernel for O an open regular set in R-d. In d >= 3 we show that g(O)(beta) is again a Green kernel of a Markov Feller process, for any power beta is an element of [1, d/(d -2)). In dimension d = 2, we show the same result for g(O)(beta), for any beta >= 1 and for kernels exp alpha g(O) exp(alpha g(O)) - 1, for alpha is an element of(0, 2 pi), when O is an open Greenian regular set whose complement contains a ball.
Más información
Título según WOS: | Powers of Brownian Green Potentials |
Título de la Revista: | POTENTIAL ANALYSIS |
Editorial: | Springer |
Fecha de publicación: | 2021 |
DOI: |
10.1007/s11118-020-09883-z |
Notas: | ISI |