High-Order Polynomial Fitting Assistance for Fast Double-Peak Finding in Brillouin-Distributed Sensing

Soto, Marcelo A.; Jderu, Alin; Dorobantu, Dorel; Enachescu, Marius; Ziegler, Dominik

Abstract

A high-order polynomial fitting method is proposed to accelerate the computation of double-Gaussian fitting in the retrieval of the Brillouin frequency shifts (BFS) in optical fibers showing two local Brillouin peaks. The method is experimentally validated in a distributed Brillouin sensor under different signal-to noise ratios and realistic spectral scenarios. Results verify that a sixth-order polynomial fitting can provide a reliable initial estimation of the dual local BFS values, which can be subsequently used as initial parameters of a nonlinear double-Gaussian fitting. The method demonstrates a 4.9-fold reduction in the number of iterations required by double-Gaussian fitting and a 3.4-fold improvement in processing time.

Más información

Título según WOS: High-Order Polynomial Fitting Assistance for Fast Double-Peak Finding in Brillouin-Distributed Sensing
Título de la Revista: SENSORS
Volumen: 21
Número: 1
Editorial: MDPI
Fecha de publicación: 2021
DOI:

10.3390/S21010187

Notas: ISI