Conditional maximum entropy and superstatistics
Abstract
Superstatistics describes nonequilibrium steady states as superpositions of canonical ensembles with a probability distribution of temperatures. Rather than assume a certain distribution of temperature, recently [2020J. Phys. A: Math. Theor.53045004] we have discussed general conditions under which a system in contact with a finite environment can be described by superstatistics together with a physically interpretable, microscopic definition of temperature. In this work, we present a new interpretation of this result in terms of the standard maximum entropy principle using conditional expectation constraints, and provide an example model where this framework can be tested.
Más información
Título según WOS: | Conditional maximum entropy and superstatistics |
Título de la Revista: | JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL |
Volumen: | 53 |
Número: | 44 |
Editorial: | IOP PUBLISHING LTD |
Fecha de publicación: | 2020 |
DOI: |
10.1088/1751-8121/ABB6AF |
Notas: | ISI |