Characterization of mechanical damage to the aorta in hypoxic condition Numerical modeling and simulation of a pressurization test
Abstract
In order to reliably assess the rupture-risk of the aorta - along with the hazardousness index of cardiovascular diseases or other extreme conditions, and the effect of possible treatments - it is necessary to know the damage mechanisms that lead to it. In this work, the mechanical damage of hypoxic aortic tissue is characterized, numerically predicting its response when subjected to a bulge-test type of pressurization state. The mechanical behavior of the aortic wall, is described using a hyperelastic material model with two transverse-isotropy directions and an isotropic damage model; both experimentally calibrated, from previously reported uniaxial tensile-test results, performed on thoracic aorta samples of lambs exposed to chronic hypobaric hypoxia. A melatonin-treated group is studied in contrast to a control group. Once the constitutive model is calibrated, its performance is evaluated via the numerical simulation of the bulge-pressurization test; in which the quasistatic response of a quarter-disk shaped structure, fixed along its curved perimeter, and loaded out of its plane by a pressure, or force per unit area permanently normal to the loaded area, its analyzed. The experimental data and the results of numerical simulations indicate that a melatonin treatment reduces the stiffness of the aorta. Moreover, the group-wise determined pressures, delivered by the bulge-test simulation and associated with the onset of damage, are compatible with an arterial hypertensive condition.
Más información
Título según WOS: | Characterization of mechanical damage to the aorta in hypoxic condition Numerical modeling and simulation of a pressurization test |
Título de la Revista: | MATERIA-RIO DE JANEIRO |
Volumen: | 26 |
Número: | 1 |
Editorial: | UNIV FED RIO DE JANEIRO, LAB HIDROGENIO |
Fecha de publicación: | 2021 |
DOI: |
10.1590/S1517-707620210001.1240 |
Notas: | ISI |