A virtual element method for the von Karman equations

Lovadina, Carlo; Mora, David; Velasquez, Ivan

Abstract

In this article we propose and analyze a Virtual Element Method (VEM) to approximate the isolated solutions of the von Karman equations, which describe the deformation of very thin elastic plates. We consider a variational formulation in terms of two variables: the transverse displacement of the plate and the Airy stress function. The VEM scheme is conforming in H-2 for both variables and has the advantages of supporting general polygonal meshes and is simple in terms of coding aspects. We prove that the discrete problem is well posed for h small enough and optimal error estimates are obtained. Finally, numerical experiments are reported illustrating the behavior of the virtual scheme on different families of meshes.

Más información

Título según WOS: A virtual element method for the von Karman equations
Título de la Revista: ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE
Volumen: 55
Número: 2
Editorial: EDP SCIENCES S A
Fecha de publicación: 2021
Página de inicio: 533
Página final: 560
DOI:

10.1051/M2AN/2020085

Notas: ISI