A virtual element method for the von Karman equations
Abstract
In this article we propose and analyze a Virtual Element Method (VEM) to approximate the isolated solutions of the von Karman equations, which describe the deformation of very thin elastic plates. We consider a variational formulation in terms of two variables: the transverse displacement of the plate and the Airy stress function. The VEM scheme is conforming in H-2 for both variables and has the advantages of supporting general polygonal meshes and is simple in terms of coding aspects. We prove that the discrete problem is well posed for h small enough and optimal error estimates are obtained. Finally, numerical experiments are reported illustrating the behavior of the virtual scheme on different families of meshes.
Más información
Título según WOS: | A virtual element method for the von Karman equations |
Título de la Revista: | ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE |
Volumen: | 55 |
Número: | 2 |
Editorial: | EDP SCIENCES S A |
Fecha de publicación: | 2021 |
Página de inicio: | 533 |
Página final: | 560 |
DOI: |
10.1051/M2AN/2020085 |
Notas: | ISI |