A singular Sturm-Liouville equation under homogeneous boundary conditions
Abstract
Given alpha > 0 and f is an element of L-2(0, 1), we are interested in the equation {-(x(2 alpha)u'(x))' +u(x) = f(x) on (0,1], u(1) = 0. We prescribe appropriate (weighted) homogeneous boundary conditions at the origin and prove the existence and uniqueness of H-loc(2)(0, 1] solutions. We study the regularity at the origin of such solutions. We perform a spectral analysis of the differential operator Lu := -(x(2 alpha) u')' + u under those appropriate homogeneous boundary conditions. (C) 2011 Elsevier Inc. All rights reserved.
Más información
| Título según WOS: | ID WOS:000292430500007 Not found in local WOS DB |
| Título de la Revista: | JOURNAL OF FUNCTIONAL ANALYSIS |
| Volumen: | 261 |
| Número: | 6 |
| Editorial: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
| Fecha de publicación: | 2011 |
| Página de inicio: | 1542 |
| Página final: | 1590 |
| DOI: |
10.1016/j.jfa.2011.05.012 |
| Notas: | ISI |