Tracks emerging by forcing Langton's ant with binary sequences

Markus M; Schmick, M; Goles, E.

Abstract

The well-known "ant" defined by C. Langton on a grid with black and white squares is forced by periodical binary sequences {rm}, as follows: i) The ant turns 90° to the left (right) if it enters a white (black) square and if {rm} = 0 (Langton's case); and ii) the directions are reversed if {rm} = 1: in both cases the color of the square is inverted as the ant proceeds. Changing the sequences {rm}, we obtain a plethora of different, periodical tracks. Thousands of runs, some of them differing only by one bit, never rendered the same pattern. Also, an ant moving from a white to a black domain may experience reflection, refraction or sliding on the black-white-border. © 2006 Wiley Periodicals, Inc.

Más información

Título según WOS: Tracks emerging by forcing Langton's ant with binary sequences
Título según SCOPUS: Tracks emerging by forcing Langton's ant with binary sequences
Título de la Revista: COMPLEXITY
Volumen: 11
Número: 3
Editorial: WILEY-HINDAWI
Fecha de publicación: 2006
Página de inicio: 27
Página final: 32
Idioma: English
URL: http://doi.wiley.com/10.1002/cplx.20111
DOI:

10.1002/cplx.20111

Notas: ISI, SCOPUS