MODELING CRACK PATTERNS BY MODIFIED STIT TESSELLATIONS
Abstract
Random planar tessellations are presented which are generated by subsequent division of their polygonal cells. The purpose is to develop parametric models for crack patterns appearing at length scales which can change by orders of magnitude in areas such as nanotechnology, materials science, soft matter, and geology. Using the STIT tessellation as a reference model and comparing with phenomena in real crack patterns, three modifications of STIT are suggested. For all these models a simulation tool, which also yields several statistics for the tessellation cells, is provided on the web. The software is freely available via a link given in the bibliography of this article. The present paper contains results of a simulation study indicating some essential features of the models. Finally, an example of a real fracture pattern is considered which is obtained using the deposition of a thin metallic film onto an elastomer material - the results of this are compared to the predictions of the model.
Más información
Título según WOS: | MODELING CRACK PATTERNS BY MODIFIED STIT TESSELLATIONS |
Título de la Revista: | IMAGE ANALYSIS STEREOLOGY |
Volumen: | 39 |
Número: | 1 |
Editorial: | INT SOC STEREOLOGY |
Fecha de publicación: | 2020 |
Página de inicio: | 33 |
Página final: | 46 |
DOI: |
10.5566/IAS.2245 |
Notas: | ISI |