Principal Poincare-Pontryagin function of polynomial perturbations of the Hamiltonian triangle

Uribe M.

Abstract

In this paper, we consider a small polynomial perturbation of the Hamiltonian vector field with the Hamiltonian F(x, y) = x [y2 - (x - 3)2] having a center bounded by a triangle. The main result of this work is that the principal Poincaré - Pontryagin function associated with such a perturbation and with the family of ovals surrounding the center belongs to the ℂ[t, 1/t] module generated by Abelian integrals I0(t) and I2(t) and by I*(t), where I*(t) is not an Abelian integral. We show that, in general, the principal Poincaré - Pontryagin function of order two of a polynomial perturbation of the degree at least five is not an Abelian integral. © 2006 Springer Science+Business Media, Inc.

Más información

Título según WOS: Principal Poincare-Pontryagin function of polynomial perturbations of the Hamiltonian triangle
Título según SCOPUS: Principal Poincaré - Pontryagin function of polynomial perturbations of the Hamiltonian triangle
Título de la Revista: JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS
Volumen: 12
Número: 1
Editorial: SPRINGER/PLENUM PUBLISHERS
Fecha de publicación: 2006
Página de inicio: 109
Página final: 134
Idioma: English
URL: http://link.springer.com/10.1007/s10450-006-9687-4
DOI:

10.1007/s10450-006-9687-4

Notas: ISI, SCOPUS