Principal Poincare-Pontryagin function of polynomial perturbations of the Hamiltonian triangle
Abstract
In this paper, we consider a small polynomial perturbation of the Hamiltonian vector field with the Hamiltonian F(x, y) = x [y2 - (x - 3)2] having a center bounded by a triangle. The main result of this work is that the principal Poincaré - Pontryagin function associated with such a perturbation and with the family of ovals surrounding the center belongs to the ℂ[t, 1/t] module generated by Abelian integrals I0(t) and I2(t) and by I*(t), where I*(t) is not an Abelian integral. We show that, in general, the principal Poincaré - Pontryagin function of order two of a polynomial perturbation of the degree at least five is not an Abelian integral. © 2006 Springer Science+Business Media, Inc.
Más información
Título según WOS: | Principal Poincare-Pontryagin function of polynomial perturbations of the Hamiltonian triangle |
Título según SCOPUS: | Principal Poincaré - Pontryagin function of polynomial perturbations of the Hamiltonian triangle |
Título de la Revista: | JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS |
Volumen: | 12 |
Número: | 1 |
Editorial: | SPRINGER/PLENUM PUBLISHERS |
Fecha de publicación: | 2006 |
Página de inicio: | 109 |
Página final: | 134 |
Idioma: | English |
URL: | http://link.springer.com/10.1007/s10450-006-9687-4 |
DOI: |
10.1007/s10450-006-9687-4 |
Notas: | ISI, SCOPUS |