A semi-implicit monotone difference scheme for an initial-boundary value problem of a strongly degenerate parabolic equation modeling sedimentation-consolidation processes

Burger, R; Coronel, I; Sepúlveda M.

Abstract

We prove the convergence of a semi-implicit monotone finite difference scheme approximating an initial-boundary value problem for a spatially one-dimensional quasilinear strongly degenerate parabolic equation, which is supplied with two different inhomogeneous flux-type boundary conditions. This problem arises in the modeling of the sedimentation-consolidation process. We formulate the definition of entropy solution of the model in the sense of Kružkov and prove convergence of the scheme to the unique BV entropy solution of the problem, up to satisfaction of one of the boundary conditions. © 2005 American Mathematical Society.

Más información

Título según WOS: A semi-implicit monotone difference scheme for an initial-boundary value problem of a strongly degenerate parabolic equation modeling sedimentation-consolidation processes
Título según SCOPUS: A semi-implicit monotone difference scheme for an initial-boundary value problem of a strongly degenerate parabolic equation modeling sedimentation-consolidation processes
Título de la Revista: MATHEMATICS OF COMPUTATION
Volumen: 74
Número: 253
Editorial: AMER MATHEMATICAL SOC
Fecha de publicación: 2006
Página de inicio: 91
Página final: 112
Idioma: eng
URL: http://www.ams.org/journal-getitem?pii=S0025-5718-05-01787-4
Notas: ISI, SCOPUS