Model Error Modelling using a Stochastic Embedding approach with Gaussian Mixture Models for FIR systems
Abstract
In this paper a Maximum Likelihood estimation algorithm for error-model modelling using a stochastic embedding approach is developed. The error-model distribution is approximated by a finite Gaussian mixture. An Expectation-Maximization based algorithm is proposed to estimate the nominal model and the distribution of the parameters of the error-model by using the data from independent experiments. The benefits of our proposal are illustrated via numerical simulations. Copyright (C) 2020 The Authors.
Más información
| Título según WOS: | Model Error Modelling using a Stochastic Embedding approach with Gaussian Mixture Models for FIR systems |
| Título de la Revista: | IFAC PAPERSONLINE |
| Volumen: | 53 |
| Número: | 2 |
| Editorial: | Elsevier |
| Fecha de publicación: | 2020 |
| Página de inicio: | 845 |
| Página final: | 850 |
| DOI: |
10.1016/J.IFACOL.2020.12.841 |
| Notas: | ISI |