Model Error Modelling using a Stochastic Embedding approach with Gaussian Mixture Models for FIR systems

Orellana, Rafael; Carvajal, Rodrigo; Aguero, Juan C.; Goodwin, Graham C.

Abstract

In this paper a Maximum Likelihood estimation algorithm for error-model modelling using a stochastic embedding approach is developed. The error-model distribution is approximated by a finite Gaussian mixture. An Expectation-Maximization based algorithm is proposed to estimate the nominal model and the distribution of the parameters of the error-model by using the data from independent experiments. The benefits of our proposal are illustrated via numerical simulations. Copyright (C) 2020 The Authors.

Más información

Título según WOS: Model Error Modelling using a Stochastic Embedding approach with Gaussian Mixture Models for FIR systems
Título de la Revista: IFAC PAPERSONLINE
Volumen: 53
Número: 2
Editorial: Elsevier
Fecha de publicación: 2020
Página de inicio: 845
Página final: 850
DOI:

10.1016/J.IFACOL.2020.12.841

Notas: ISI