Homogenization of a class of nonlinear eigenvalue problems
Abstract
In this article we study the asymptotic behaviour of the eigenvalues of a family of nonlinear monotone elliptic operators of the form Aε =-div(aε(x, ▽u)), which are sub-differentials of even, positively homogeneous convex functionals, under the assumption that the operators G-converge to an operator Ahom = - div(ahom(x, ▽u)). We show that any limit point λ of a sequence of eigenvalues λε is an eigenvalue of the limit operator A hom, where λε is an eigenvalue corresponding to the operator Aε. We also show the convergence of the sequence of first eigenvalues λε 1 to the corresponding first eigenvalue of the homogenized operator. © 2006 The Royal Society of Edinburgh.
Más información
Título según WOS: | Homogenization of a class of nonlinear eigenvalue problems |
Título según SCOPUS: | Homogenization of a class of nonlinear eigenvalue problems |
Título de la Revista: | PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS |
Volumen: | 136 |
Número: | 1 |
Editorial: | CAMBRIDGE UNIV PRESS |
Fecha de publicación: | 2006 |
Página de inicio: | 7 |
Página final: | 22 |
Idioma: | English |
URL: | http://www.journals.cambridge.org/abstract_S0308210500004418 |
DOI: |
10.1017/S0308210500004418 |
Notas: | ISI, SCOPUS |