Contracting Lorenz attractors through resonant double homoclinic loops

Morales, CA; Pacifico, MJ; San Martin B.

Abstract

A contracting Lorenz attractor of a three-dimensional vector field is an attractor with a unique singularity whose eigenvalues are real and satisfy the eigenvalue conditions λss < λs < 0 < λu and λs + λu < 0. The study of contracting Lorenz attractors started in [A. Rovella, Bol. Soc. Brasil. Mat. (N.S.), 24 (1993), pp. 233-259]. In this paper we show that certain resonant double homoclinic loops in dimension three generate contracting Lorenz attractors in a positive Lebesgue subset of the parameter space. This gives a positive answer to a question posed in [C. Robinson, SIAM J. Math. Anal., 32 (2000), pp. 119-141]. © 2006 Society for Industrial and Applied Mathematics.

Más información

Título según WOS: Contracting Lorenz attractors through resonant double homoclinic loops
Título según SCOPUS: Contracting Lorenz attractors through resonant double homoclinic loops
Título de la Revista: SIAM JOURNAL ON MATHEMATICAL ANALYSIS
Volumen: 38
Número: 1
Editorial: SIAM PUBLICATIONS
Fecha de publicación: 2006
Página de inicio: 309
Página final: 332
Idioma: English
URL: http://epubs.siam.org/doi/abs/10.1137/S0036141004443907
DOI:

10.1137/S0036141004443907

Notas: ISI, SCOPUS