Bayesian Reference Analysis for the Generalized Normal Linear Regression Model
Abstract
This article proposes the use of the Bayesian reference analysis to estimate the parameters of the generalized normal linear regression model. It is shown that the reference prior led to a proper posterior distribution, while the Jeffreys prior returned an improper one. The inferential purposes were obtained via Markov Chain Monte Carlo (MCMC). Furthermore, diagnostic techniques based on the Kullback-Leibler divergence were used. The proposed method was illustrated using artificial data and real data on the height and diameter of Eucalyptus clones from Brazil.
Más información
Título según WOS: | Bayesian Reference Analysis for the Generalized Normal Linear Regression Model |
Título de la Revista: | SYMMETRY-BASEL |
Volumen: | 13 |
Número: | 5 |
Editorial: | MDPI |
Fecha de publicación: | 2021 |
DOI: |
10.3390/SYM13050856 |
Notas: | ISI |