Objective Bayesian analysis for the Lomax distribution
Abstract
In this paper, we propose to make Bayesian inferences for the parameters of the Lomax distribution using non-informative priors, namely the (dependent and independent) Jeffreys prior and the reference prior. We assess Bayesian estimation through a Monte Carlo study with 10,000 simulated datasets. In order to evaluate the possible impact of prior specification on estimation, two criteria were considered: the mean relative error and the mean square error. An application on a real dataset illustrates the developed procedures. (C) 2019 Elsevier B.V. All rights reserved.
Más información
Título según WOS: | ID WOS:000514752700002 Not found in local WOS DB |
Título de la Revista: | STATISTICS & PROBABILITY LETTERS |
Volumen: | 159 |
Editorial: | ELSEVIER SCIENCE BV |
Fecha de publicación: | 2020 |
DOI: |
10.1016/j.spl.2019.108677 |
Notas: | ISI |