Efficient closed-form maximum a posteriori estimators for the gamma distribution

Louzada, Francisco; Ramos, Pedro Luiz

Abstract

We proposed a new class of maximum a posteriori estimators for the parameters of the Gamma distribution. These estimators have simple closed-form expressions and can be rewritten as a bias-corrected maximum likelihood estimators presented by Ye and Chen [Closed-form estimators for the gamma distribution derived from likelihood equations. Am Statist. 2017;71(2):177-181]. A simulation study was carried out to compare different estimation procedures. Numerical results revels that our new estimation scheme outperforms the existing closed-form estimators and produces extremely efficient estimates for both parameters, even for small sample sizes.

Más información

Título según WOS: ID WOS:000424426000007 Not found in local WOS DB
Título de la Revista: JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION
Volumen: 88
Número: 6
Editorial: TAYLOR & FRANCIS LTD
Fecha de publicación: 2018
Página de inicio: 1134
Página final: 1146
DOI:

10.1080/00949655.2017.1422503

Notas: ISI