Puiseux series polynomial dynamics and iteration of complex cubic polynomials
Abstract
We let double-struck L sign be the completion of the field of formal Puiseux series and study polynomials with coefficients in double-struck L sign as dynamical systems. We give a complete description of the dynamical and parameter space of cubic polynomials in double-struck L sign[ζ]. We show that cubic polynomial dynamics over double-struck L sign and ℂ are intimately related. More precisely, we establish that some elements of double-struck L sign naturally correspond to the Fourier series of analytic almost periodic functions (in the sense of Bohr) which parametrize (near infinity) the quasiconformal classes of non-renormalizable complex cubic polynomials. Our techniques are based on the ideas introduced by Branner and Hubbard to study complex cubic polynomials.
Más información
Título según WOS: | Puiseux series polynomial dynamics and iteration of complex cubic polynomials |
Título según SCOPUS: | Puiseux series polynomial dynamics and iteration of complex cubic polynomials |
Título de la Revista: | ANNALES DE L INSTITUT FOURIER |
Volumen: | 56 |
Número: | 5 |
Editorial: | ANNALES INST FOURIER |
Fecha de publicación: | 2006 |
Página de inicio: | 1337 |
Página final: | 1404 |
Idioma: | English |
Notas: | ISI, SCOPUS |