Puiseux series polynomial dynamics and iteration of complex cubic polynomials

Kiwi J.

Abstract

We let double-struck L sign be the completion of the field of formal Puiseux series and study polynomials with coefficients in double-struck L sign as dynamical systems. We give a complete description of the dynamical and parameter space of cubic polynomials in double-struck L sign[ζ]. We show that cubic polynomial dynamics over double-struck L sign and ℂ are intimately related. More precisely, we establish that some elements of double-struck L sign naturally correspond to the Fourier series of analytic almost periodic functions (in the sense of Bohr) which parametrize (near infinity) the quasiconformal classes of non-renormalizable complex cubic polynomials. Our techniques are based on the ideas introduced by Branner and Hubbard to study complex cubic polynomials.

Más información

Título según WOS: Puiseux series polynomial dynamics and iteration of complex cubic polynomials
Título según SCOPUS: Puiseux series polynomial dynamics and iteration of complex cubic polynomials
Título de la Revista: ANNALES DE L INSTITUT FOURIER
Volumen: 56
Número: 5
Editorial: ANNALES INST FOURIER
Fecha de publicación: 2006
Página de inicio: 1337
Página final: 1404
Idioma: English
Notas: ISI, SCOPUS