Maximum Likelihood estimation for non-minimum-phase noise transfer function with Gaussian mixture noise distribution
Keywords: maximum likelihood, Expectation-maximization, Identification methods, Gaussian mixtures models
Abstract
In this paper a Maximum Likelihood estimation algorithm for a linear dynamic system driven by an exogenous input signal, with non-minimum-phase noise transfer function and a Gaussian mixture noise is developed. We propose a flexible identification technique to estimate the system model parameters and the Gaussian mixture parameters based on the Expectation-Maximization algorithm. The benefits of our proposal are illustrated via numerical simulations.
Más información
Título de la Revista: | AUTOMATICA |
Editorial: | PERGAMON-ELSEVIER SCIENCE LTD |
Fecha de publicación: | 2021 |
Notas: | ISI, SCOPUS |