Analysis of Carotenoids in Haloarchaea Species from Atacama Saline Lakes by High Resolution UHPLC-Q-Orbitrap-Mass Spectrometry: Antioxidant Potential and Biological Effect on Cell Viability

Lizama, Catherine; Romero-Parra, Javier; Andrade, Daniel; Riveros, Felipe; Borquez, Jorge; Ahmed, Shakeel; Venegas-Salas, Luis; Cabalin, Carolina; Simirgiotis, Mario J.

Abstract

Haloarchaea are extreme halophilic microorganisms belonging to the domain Archaea, phylum Euryarchaeota, and are producers of interesting antioxidant carotenoid compounds. In this study, four new strains of Haloarcula sp., isolated from saline lakes of the Atacama Desert, are reported and studied by high-resolution mass spectrometry (UHPLC-Q-Orbitrap-MS/MS) for the first time. In addition, determination of the carotenoid pigment profile from the new strains of Haloarcula sp., plus two strains of Halorubrum tebenquichense, and their antioxidant activity by means of several methods is reported. The effect of biomass on cellular viability in skin cell lines was also evaluated by MTT assay. The cholinesterase inhibition capacity of six haloarchaea (Haloarcula sp. ALT-23; Haloarcula sp. TeSe-41; Haloarcula sp. TeSe-51; Haloarcula sp. Te Se-89 and Halorubrum tebenquichense strains TeSe-85 and Te Se-86) is also reported for the first time. AChE inhibition IC50 was 2.96 +/- 0.08 mu g/mL and BuChE inhibition IC50 was 2.39 +/- 0.09 mu g/mL for the most active strain, Halorubrum tebenquichense Te Se-85, respectively, which is more active in BuCHe than that of the standard galantamine. Docking calculation showed that carotenoids can exert their inhibitory activity fitting into the enzyme pocket by their halves, in the presence of cholinesterase dimers.

Más información

Título según WOS: Analysis of Carotenoids in Haloarchaea Species from Atacama Saline Lakes by High Resolution UHPLC-Q-Orbitrap-Mass Spectrometry: Antioxidant Potential and Biological Effect on Cell Viability
Título de la Revista: ANTIOXIDANTS
Volumen: 10
Número: 8
Editorial: MDPI
Fecha de publicación: 2021
DOI:

10.3390/antiox10081230

Notas: ISI