Finite-dimensional orthogonality structures for hall-littlewood polynomials

Abstract

We present a finite-dimensional system of discrete orthogonality relations for the Hall-Littlewood polynomials. A compact determinantal formula for the weights of the discrete orthogonality measure is formulated in terms of a Gaudin-type conjecture for the normalization constants of a dual system of orthogonality relations. The correctness of our normalization conjecture has been checked in some special cases: for Hall-Littlewood polynomials up to four variables (i), for the reduction to Schur polynomials (ii), and in a continuum limit in which the Hall-Littlewood polynomials degenerate into the Bethe Ansatz eigenfunctions of the Schrödinger operator for identical Bose particles on the circle with pairwise delta-potential interactions (iii). © 2007 Springer Science+Business Media B.V.

Más información

Título según WOS: Finite-dimensional orthogonality structures for hall-littlewood polynomials
Título según SCOPUS: Finite-dimensional orthogonality structures for Hall-Littlewood polynomials
Título de la Revista: ACTA APPLICANDAE MATHEMATICAE
Volumen: 99
Número: 3
Editorial: Springer
Fecha de publicación: 2007
Página de inicio: 301
Página final: 308
Idioma: English
URL: http://link.springer.com/10.1007/s10440-007-9168-0
DOI:

10.1007/s10440-007-9168-0

Notas: ISI, SCOPUS