Finite-dimensional orthogonality structures for hall-littlewood polynomials
Abstract
We present a finite-dimensional system of discrete orthogonality relations for the Hall-Littlewood polynomials. A compact determinantal formula for the weights of the discrete orthogonality measure is formulated in terms of a Gaudin-type conjecture for the normalization constants of a dual system of orthogonality relations. The correctness of our normalization conjecture has been checked in some special cases: for Hall-Littlewood polynomials up to four variables (i), for the reduction to Schur polynomials (ii), and in a continuum limit in which the Hall-Littlewood polynomials degenerate into the Bethe Ansatz eigenfunctions of the Schrödinger operator for identical Bose particles on the circle with pairwise delta-potential interactions (iii). © 2007 Springer Science+Business Media B.V.
Más información
Título según WOS: | Finite-dimensional orthogonality structures for hall-littlewood polynomials |
Título según SCOPUS: | Finite-dimensional orthogonality structures for Hall-Littlewood polynomials |
Título de la Revista: | ACTA APPLICANDAE MATHEMATICAE |
Volumen: | 99 |
Número: | 3 |
Editorial: | Springer |
Fecha de publicación: | 2007 |
Página de inicio: | 301 |
Página final: | 308 |
Idioma: | English |
URL: | http://link.springer.com/10.1007/s10440-007-9168-0 |
DOI: |
10.1007/s10440-007-9168-0 |
Notas: | ISI, SCOPUS |