Boosting the deep learning wavefront sensor for real-time applications [Invited]

Vera, Esteban; Guzman, Felipe; Weinberger, Camilo

Abstract

The deep learning wavefront sensor (DLWFS) allows the direct estimate of Zernike coefficients of aberrated wave-fronts from intensity images. The main drawback of this approach is related to the use of massive convolutional neural networks (CNNs) that are lengthy to train or estimate. In this paper, we explore several options to reduce both the training and estimation time. First, we develop a CNN that can be rapidly trained without compromising accuracy. Second, we explore the effects given smaller input image sizes and different amounts of Zernike modes to be estimated. Our simulation results demonstrate that the proposed network using images of either 8 x 8, 16 x 16, or 32 x 32 will dramatically reduce training time and even boost the estimation accuracy of Zernike coefficients. From our experimental results, we can confirm that a 16 x 16 DLWFS can be quickly trained and is able to estimate the first 12 Zernike coefficients-skipping piston, tip, and tilt-without sacrificing accuracy and significantly speeding up the prediction time to facilitate low-cost, real-time adaptive optics systems. (C) 2021 Optical Society of America

Más información

Título según WOS: Boosting the deep learning wavefront sensor for real-time applications [Invited]
Título de la Revista: APPLIED OPTICS
Volumen: 60
Número: 10
Editorial: OPTICAL SOC AMER
Fecha de publicación: 2021
Página de inicio: B119
Página final: B124
DOI:

10.1364/AO.417574

Notas: ISI