Thermal Face Generation Using StyleGAN

Hermosilla, Gabriel; Henriquez Tapia, Diego-Ignacio; Allende-Cid, Hector; Farias Castro, Gonzalo; Vera, Esteban

Abstract

This article proposes the use of generative adversarial networks (GANs) via StyleGAN2 to create high-quality synthetic thermal images and obtain training data to build thermal face recognition models using deep learning. We employed different variants of StyleGAN2, incorporating the new improved version of StyleGAN that uses adaptive discriminator augmentation (ADA). In addition, three different thermal databases from the literature were employed to train a thermal face detector based on YOLOv3 and to train StyleGAN2 and its variants, evaluating different metrics. The synthetic thermal database was built using GANSpace to manipulate the intermediate latent space w of StyleGAN2 and obtain images with different characteristics, such as eyeglasses, rotation, beards, etc. We carried out the training of 6 pretrained deep learning models for face recognition to validate the use of our synthetic thermal database, obtaining 99.98% accuracy for classifying synthetic thermal face images.

Más información

Título según WOS: Thermal Face Generation Using StyleGAN
Título de la Revista: IEEE ACCESS
Volumen: 9
Editorial: IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Fecha de publicación: 2021
Página de inicio: 80511
Página final: 80523
DOI:

10.1109/ACCESS.2021.3085423

Notas: ISI