Boundary singularities for weak solutions of semilinear elliptic problems
Abstract
Let Ω be a bounded domain in RN, N ≥ 2, with smooth boundary ∂Ω. We construct positive weak solutions of the problem Δ u + up = 0 in Ω, which vanish in a suitable trace sense on ∂Ω, but which are singular at prescribed isolated points if p is equal or slightly above frac(N + 1, N - 1). Similar constructions are carried out for solutions which are singular at any given embedded submanifold of ∂Ω of dimension k ∈ [0, N - 2], if p equals or it is slightly above frac(N - k + 1, N - k - 1), and even on countable families of these objects, dense on a given closed set. The role of the exponent frac(N + 1, N - 1) (first discovered by Brezis and Turner [H. Brezis, R. Turner, On a class of superlinear elliptic problems, Comm. Partial Differential Equations 2 (1977) 601-614]) for boundary regularity, parallels that of frac(N, N - 2) for interior singularities. © 2007 Elsevier Inc. All rights reserved.
Más información
Título según WOS: | Boundary singularities for weak solutions of semilinear elliptic problems |
Título según SCOPUS: | Boundary singularities for weak solutions of semilinear elliptic problems |
Título de la Revista: | JOURNAL OF FUNCTIONAL ANALYSIS |
Volumen: | 253 |
Número: | 1 |
Editorial: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
Fecha de publicación: | 2007 |
Página de inicio: | 241 |
Página final: | 272 |
Idioma: | English |
URL: | http://linkinghub.elsevier.com/retrieve/pii/S0022123607001887 |
DOI: |
10.1016/j.jfa.2007.05.023 |
Notas: | ISI, SCOPUS |