Structure of bounded topological-sequence-entropy minimal systems
Abstract
In this article we prove that a minimal topological dynamical system (X, T) with bounded topological sequence entropy has the following structure.Here π is the maximal equicontinuous factor of (X, T), σ′ and τ′ are proximal extensions and π′ is a finite-to-one equicontinuous extension. In order to prove this result we consider sequence entropy tuples and give their complete relation with regionally proximal tuples. © 2007 London Mathematical Society.
Más información
| Título según WOS: | Structure of bounded topological-sequence-entropy minimal systems |
| Título según SCOPUS: | Structure of bounded topological-sequence-entropy minimal systems |
| Título de la Revista: | JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES |
| Volumen: | 76 |
| Número: | 3 |
| Editorial: | Wiley |
| Fecha de publicación: | 2007 |
| Página de inicio: | 702 |
| Página final: | 718 |
| Idioma: | English |
| URL: | http://jlms.oxfordjournals.org/cgi/doi/10.1112/jlms/jdm080 |
| DOI: |
10.1112/jlms/jdm080 |
| Notas: | ISI, SCOPUS |