Local dynamics for fibred holomorphic transformations
Abstract
Fibred holomorphic dynamics are skew-product transformations F(, z) = ( + α, f(z)) over an irrational rotation, such that f is holomorphic for every . In this paper we study such a dynamics in a neighbourhood of an invariant curve. We obtain some results analogous to the results in the non-fibred case. In particular, we prove a fibred version of the folklore result stating that Lyapounov stability is equivalent to linearization around a fixed point. We also obtain a fibred version of the Pérez-Marco continua. © 2007 IOP Publishing Ltd and London Mathematical Society.
Más información
| Título según WOS: | Local dynamics for fibred holomorphic transformations |
| Título según SCOPUS: | Local dynamics for fibred holomorphic transformations |
| Título de la Revista: | NONLINEARITY |
| Volumen: | 20 |
| Número: | 12 |
| Editorial: | IOP PUBLISHING LTD |
| Fecha de publicación: | 2007 |
| Página de inicio: | 2939 |
| Página final: | 2955 |
| Idioma: | English |
| URL: | http://stacks.iop.org/0951-7715/20/i=12/a=011?key=crossref.d9a35a915ceb600ec724a17a87d9aee8 |
| DOI: |
10.1088/0951-7715/20/12/011 |
| Notas: | ISI, SCOPUS |