A note on a non-linear Krein-Rutman theorem

Mahadevan R.

Abstract

In this note we will present an extension of the Krein-Rutman theorem [M.G. Kreǐn, M.A. Rutman, Linear operators leaving invariant a cone in a Banach space, Amer. Math. Soc. Transl. (26) (1950). [9]] for an abstract non-linear, compact, positively 1-homogeneous operator on a Banach space having the properties of being increasing with respect to a convex cone K and such that there is a non-zero u ∈ K for which M T u {succeeds or equal to} u for some positive constant M. This will provide a uniform framework for recovering the Krein-Rutman-like theorems proved for many non-linear differential operators of elliptic type, like the p-Laplacian, cf. Anane [A. Anane, Simplicité et isolation de la première valeur propre du p-laplacien avec poids (Simplicity and isolation of the first eigenvalue of the p-Laplacian with weight), C. R. Acad. Sci. Paris 305 (16) (1987) 725-728 (in French)], the Hardy-Sobolev operator, cf. Sreenadh [K. Sreenadh, On the eigenvalue problem for the Hardy-Sobolev operator with indefinite weights, Electron. J. Differential Equations (33) (2002) 1-12], Pucci's operator, cf. Felmer and Quaas [P. Felmer, A. Quaas, Positive radial solutions to a 'semilinear' equation involving the Pucci's operator, J. Differential Equations 199 (2) (2004) 376-393]. Our proof follows the same lines as in the linear case, cf. Rabinowitz [P. Rabinowitz, Théorie du Degré Topologique et Applications à des Problèmes aux Limites Non Linéaires, Lecture Notes Lab. Analyse Numérique, Université Paris VI, 1975], and is based on a bifurcation theorem. © 2006 Elsevier Ltd. All rights reserved.

Más información

Título según WOS: A note on a non-linear Krein-Rutman theorem
Título según SCOPUS: A note on a non-linear Krein-Rutman theorem
Título de la Revista: NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS
Volumen: 67
Número: 11
Editorial: PERGAMON-ELSEVIER SCIENCE LTD
Fecha de publicación: 2007
Página de inicio: 3084
Página final: 3090
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0362546X06006213
DOI:

10.1016/j.na.2006.09.062

Notas: ISI, SCOPUS