A conjecture of Watkins for quadratic twists
Abstract
Watkins conjectured that for an elliptic curve E over Q of Mordell-Weil rank r, the modular degree of E is divisible by r^2. If E has non-trivial rational 2-torsion, we prove the conjecture for all the quadratic twists of E by squarefree integers with sufficiently many prime factors.
Más información
Título de la Revista: | PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY |
Volumen: | 149 |
Editorial: | AMER MATHEMATICAL SOC |
Fecha de publicación: | 2021 |
Página de inicio: | 2381 |
Página final: | 2385 |
DOI: |
https://doi.org/10.1090/proc/15376 |
Notas: | ISI |