A conjecture of Watkins for quadratic twists
Abstract
Watkins conjectured that for an elliptic curve E over Q of Mordell-Weil rank r, the modular degree of E is divisible by r^2. If E has non-trivial rational 2-torsion, we prove the conjecture for all the quadratic twists of E by squarefree integers with sufficiently many prime factors.
Más información
| Título de la Revista: | PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY |
| Volumen: | 149 |
| Editorial: | AMER MATHEMATICAL SOC |
| Fecha de publicación: | 2021 |
| Página de inicio: | 2381 |
| Página final: | 2385 |
| DOI: |
https://doi.org/10.1090/proc/15376 |
| Notas: | ISI |