A new porous organic polymer containing Troger's base units: Evaluation of the catalytic activity in Knoevenagel condensation reaction

Rodriguez-Gonzalez, Fidel E.; Niebla, Vladimir; Velazquez-Tundidor, M. V.; Tagle, Luis H.; Martin-Trasanco, Rudy; Coll, Deysma; Ortiz, Pablo A.; Escalona, Nestor; Perez, Edwin; Jessop, Ignacio A.; Terraza, Claudio A.; Tundidor-Camba, Alain

Abstract

The classic Tro center dot ger's base polymerization of a diamine and dimethoxymethane with trifluoroacetic acid as catalyst generated a Tro center dot ger's base-type polymer (TBP), which exhibited the absolute insolubility in a variety of organic solvents because of its highly aggregated model. A new porous organic polymer was obtained by a simple Tro center dot ger's base polymerization reaction between a diamine and formaldehyde in the form of acetal in the presence of trifluoroacetic acid as catalyst. Tro center dot ger's base-type polymer (TBP) resulted insoluble in a wide range of organic solvents due to its rigid and aromatic structure. TBP was characterized spectroscopically (FT-IR), thermally and morphologically. As result, a thermostable and amorphous polymer bearing pores ranging between 50 and 300 nm and macro-voids of up to 12 mu m was obtained. Due to the insolubility of the TBP, it was tested as a metal-free heterogeneous catalyst in the Knoevenagel condensation reaction, showing a high efficiency. For this, the optimal catalyst load, reaction time and reuse of the catalyst were studied using benzaldehyde and malononitrile as substrates. Furthermore, aldehydes with variable chain sizes and ethyl cyanoacetate replacing malononitrile were tested as substrate with a high percent of conversion (97-99%).

Más información

Título según WOS: A new porous organic polymer containing Troger's base units: Evaluation of the catalytic activity in Knoevenagel condensation reaction
Título de la Revista: REACTIVE FUNCTIONAL POLYMERS
Volumen: 167
Editorial: Elsevier
Fecha de publicación: 2021
DOI:

10.1016/j.reactfunctpolym.2021.104998

Notas: ISI