An explicit formula for eigenvalues of Bethe trees and upper bounds on the largest eigenvalue of any tree

Rojo, O; Robbiano, M

Abstract

A Bethe tree B d,k is a rooted unweighted of k levels in which the root vertex has degree equal to d, the vertices at level j (2 ≤ j ≤ k - 1) have degree equal to (d + 1) and the vertices at level k are the pendant vertices. In this paper, we first derive an explicit formula for the eigenvalues of the adjacency matrix of B d,k. Moreover, we give the corresponding multiplicities. Next, we derive an explicit formula for the simple nonzero eigenvalues, among them the largest eigenvalue, of the Laplacian matrix of B d,k. Finally, we obtain upper bounds on the largest eigenvalue of the adjacency matrix and of the Laplacian matrix of any tree J. These upper bounds are given in terms of the largest vertex degree and the radius of J, and they are attained if and only if J is a Bethe tree. © 2007 Elsevier Inc. All rights reserved.

Más información

Título según WOS: An explicit formula for eigenvalues of Bethe trees and upper bounds on the largest eigenvalue of any tree
Título según SCOPUS: An explicit formula for eigenvalues of Bethe trees and upper bounds on the largest eigenvalue of any tree
Título de la Revista: LINEAR ALGEBRA AND ITS APPLICATIONS
Volumen: 427
Número: 1
Editorial: Elsevier Science Inc.
Fecha de publicación: 2007
Página de inicio: 138
Página final: 150
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0024379507003059
DOI:

10.1016/j.laa.2007.06.024

Notas: ISI, SCOPUS