Adaptive Digital Filter using NARX Deep Neural Networks for ground-based observatories

Toledo-Mercado, Esteban; SOTO, ISMAEL; Rojo, Patricio M.; Pereira-Mendoza, Jonathan; Quiroz, Juan; Zamorano-Illanes, Raul

Keywords: spectroscopy, exoplanet, dsp, wasp-19b, Python, Ground-based Observatory, Narx Neural Network, Exoplanetary Transit

Abstract

In this paper we will present a new method based on the non-symmetry of the wavelength distributions of exoplanet transits. By the clustering of wavelengths with similar behaviour, it is possible to cancel terrestrial atmospheric turbulence at ground-based observatories. Two types of benchmarks for training the NARX neural network are presented. Complexity and performance studies using transient spectroscopy data from the WASP-19b system are also included.

Más información

Editorial: IEEE
Fecha de publicación: 2021
Año de Inicio/Término: 22-26 March 2021
Página de inicio: 1
Página final: 7
Idioma: Inglés
Financiamiento/Sponsor: Project STICAMSUD 1l9-STIC-08 and DICYT 062117S
URL: https://ieeexplore-ieee-org.ezproxy.usach.cl/document/9465196
DOI:

10.1109/ICAACCA51523.2021.9465196