Adaptive Digital Filter using NARX Deep Neural Networks for ground-based observatories
Keywords: spectroscopy, exoplanet, dsp, wasp-19b, Python, Ground-based Observatory, Narx Neural Network, Exoplanetary Transit
Abstract
In this paper we will present a new method based on the non-symmetry of the wavelength distributions of exoplanet transits. By the clustering of wavelengths with similar behaviour, it is possible to cancel terrestrial atmospheric turbulence at ground-based observatories. Two types of benchmarks for training the NARX neural network are presented. Complexity and performance studies using transient spectroscopy data from the WASP-19b system are also included.
Más información
Editorial: | IEEE |
Fecha de publicación: | 2021 |
Año de Inicio/Término: | 22-26 March 2021 |
Página de inicio: | 1 |
Página final: | 7 |
Idioma: | Inglés |
Financiamiento/Sponsor: | Project STICAMSUD 1l9-STIC-08 and DICYT 062117S |
URL: | https://ieeexplore-ieee-org.ezproxy.usach.cl/document/9465196 |
DOI: |
10.1109/ICAACCA51523.2021.9465196 |