Bloch wave homogenization of a non-homogeneous Neumann problem

Ortega, J; Martin, JS; Smaranda L.

Abstract

In this paper, we use the Bloch wave method to study the asymptotic behavior of the solution of the Laplace equation in a periodically perforated domain, under a non-homogeneous Neumann condition on the boundary of the holes, as the size of the holes goes to zero more rapidly than the domain period. This method allows to prove that, when the hole size exceeds a given threshold, the non-homogeneous boundary condition generates an additional term in the homogenized problem, commonly referred to as "the strange term" in the literature. © 2007 Birkhäuser Verlag, Basel.

Más información

Título según WOS: Bloch wave homogenization of a non-homogeneous Neumann problem
Título según SCOPUS: Bloch wave homogenization of a non-homogeneous Neumann problem
Título de la Revista: ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK
Volumen: 58
Número: 6
Editorial: SPRINGER INT PUBL AG
Fecha de publicación: 2007
Página de inicio: 969
Página final: 993
Idioma: English
URL: http://link.springer.com/10.1007/s00033-007-6142-7
DOI:

10.1007/s00033-007-6142-7

Notas: ISI, SCOPUS