A nonlocal inhomogeneous dispersal process
Abstract
This article in devoted to the study of the nonlocal dispersal equationut (x, t) = under(∫, R) J (frac(x - y, g (y))) frac(u (y, t), g (y)) d y - u (x, t) in R × [0, ∞), and its stationary counterpart. We prove global existence for the initial value problem, and under suitable hypothesis on g and J, we prove that positive bounded stationary solutions exist. We also analyze the asymptotic behavior of the finite mass solutions as t → ∞, showing that they converge locally to zero. © 2007 Elsevier Inc. All rights reserved.
Más información
| Título según WOS: | A nonlocal inhomogeneous dispersal process |
| Título según SCOPUS: | A nonlocal inhomogeneous dispersal process |
| Título de la Revista: | JOURNAL OF DIFFERENTIAL EQUATIONS |
| Volumen: | 241 |
| Número: | 2 |
| Editorial: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
| Fecha de publicación: | 2007 |
| Página de inicio: | 332 |
| Página final: | 358 |
| Idioma: | English |
| URL: | http://linkinghub.elsevier.com/retrieve/pii/S0022039607002082 |
| DOI: |
10.1016/j.jde.2007.06.002 |
| Notas: | ISI, SCOPUS |