A nonlocal inhomogeneous dispersal process

Cortázar C.; Coville J; Elgueta, M; Martínez, S.

Abstract

This article in devoted to the study of the nonlocal dispersal equationut (x, t) = under(∫, R) J (frac(x - y, g (y))) frac(u (y, t), g (y)) d y - u (x, t) in  R × [0, ∞), and its stationary counterpart. We prove global existence for the initial value problem, and under suitable hypothesis on g and J, we prove that positive bounded stationary solutions exist. We also analyze the asymptotic behavior of the finite mass solutions as t → ∞, showing that they converge locally to zero. © 2007 Elsevier Inc. All rights reserved.

Más información

Título según WOS: A nonlocal inhomogeneous dispersal process
Título según SCOPUS: A nonlocal inhomogeneous dispersal process
Título de la Revista: JOURNAL OF DIFFERENTIAL EQUATIONS
Volumen: 241
Número: 2
Editorial: ACADEMIC PRESS INC ELSEVIER SCIENCE
Fecha de publicación: 2007
Página de inicio: 332
Página final: 358
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0022039607002082
DOI:

10.1016/j.jde.2007.06.002

Notas: ISI, SCOPUS