Multiple solutions of a coupled nonlinear Schrodinger systern
Abstract
We will consider the relation between the number of positive standing waves solutions for a class of coupled nonlinear Schrödinger system in RN and the topology of the set of minimum points of potential V (x). The main characteristics of the system are that its functional is strongly indefinite at zero and there is a lack of compactness in RN. Combining the dual variational method with the Nehari technique and using the Concentration-Compactness Lemma, we obtain the existence of multiple solutions associated to the set of global minimum points of the potential V (x) for ε{lunate} sufficiently small. In addition, our result gives a partial answer to a problem raised by Sirakov about existence of solutions of the perturbed system. © 2007 Elsevier Inc. All rights reserved.
Más información
| Título según WOS: | Multiple solutions of a coupled nonlinear Schrodinger systern |
| Título según SCOPUS: | Multiple solutions of a coupled nonlinear Schrödinger system |
| Título de la Revista: | JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS |
| Volumen: | 334 |
| Número: | 2 |
| Editorial: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
| Fecha de publicación: | 2007 |
| Página de inicio: | 1308 |
| Página final: | 1325 |
| Idioma: | English |
| URL: | http://linkinghub.elsevier.com/retrieve/pii/S0022247X07000510 |
| DOI: |
10.1016/j.jmaa.2007.01.024 |
| Notas: | ISI, SCOPUS |