On q-n-gonal Klein surfaces
Abstract
We consider proper Klein surfaces X of algebraic genus p 2, having an automorphism of prime order n with quotient space X/of algebraic genus q. These Klein surfaces are called q-n-gonal surfaces and they are n-sheeted covers of surfaces of algebraic genus q. In this paper we extend the results of the already studied cases n 3 to this more general situation. Given p 2, we obtain, for each prime n, the (admissible) values q for which there exists a q-n-gonal surface of algebraic genus p. Furthermore, for each p and for each admissible q, it is possible to check all topological types of q-n-gonal surfaces with algebraic genus p. Several examples are given: q-pentagonal surfaces and q-n-gonal bordered surfaces with topological genus g = 0, 1. © 2006 Springer-Verlag Berlin Heidelberg.
Más información
Título según WOS: | On q-n-gonal Klein surfaces |
Título según SCOPUS: | On q-n-gonal Klein surfaces |
Título de la Revista: | ACTA MATHEMATICA SINICA-ENGLISH SERIES |
Volumen: | 23 |
Número: | 10 |
Editorial: | SPRINGER HEIDELBERG |
Fecha de publicación: | 2007 |
Página de inicio: | 1833 |
Página final: | 1844 |
Idioma: | English |
URL: | http://link.springer.com/10.1007/s10114-005-0828-6 |
DOI: |
10.1007/s10114-005-0828-6 |
Notas: | ISI, SCOPUS |