Ground states of a prescribed mean curvature equation
Abstract
We study the existence of radial ground state solutions for the problem- div (frac(∇ u, sqrt(1 + | ∇ u |2))) = uq, u > 0 in RN,u (x) → 0 as | x | → ∞,N ≥ 3, q > 1. It is known that this problem has infinitely many ground states when q ≥ frac(N + 2, N - 2), while no solutions exist if q ≤ frac(N, N - 2). A question raised by Ni and Serrin in [W.-M. Ni, J. Serrin, Existence and non-existence theorems for ground states for quasilinear partial differential equations, Atti Convegni Lincei 77 (1985) 231-257] is whether or not ground state solutions exist for frac(N, N - 2) < q < frac(N + 2, N - 2). In this paper we prove the existence of a large, finite number of ground states with fast decay O (| x |2 - N) as | x | → + ∞ provided that q lies below but close enough to the critical exponent frac(N + 2, N - 2). These solutions develop a bubble-tower profile as q approaches the critical exponent. © 2007 Elsevier Inc. All rights reserved.
Más información
Título según WOS: | Ground states of a prescribed mean curvature equation |
Título según SCOPUS: | Ground states of a prescribed mean curvature equation |
Título de la Revista: | JOURNAL OF DIFFERENTIAL EQUATIONS |
Volumen: | 241 |
Número: | 1 |
Editorial: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
Fecha de publicación: | 2007 |
Página de inicio: | 112 |
Página final: | 129 |
Idioma: | English |
URL: | http://linkinghub.elsevier.com/retrieve/pii/S0022039607002197 |
DOI: |
10.1016/j.jde.2007.06.010 |
Notas: | ISI, SCOPUS |