A short note on plain convergence of adaptive least-squares finite element methods
Abstract
We show that adaptive least-squares finite element methods driven by the canonical least-squares functional converge under weak conditions on PDE operator, mesh refinement, and marking strategy. Contrary to prior works, our plain convergence does neither rely on sufficiently fine initial meshes nor on severe restrictions on marking parameters. Finally, we prove that convergence is still valid if a contractive iterative solver is used to obtain the approximate solutions (e.g., the preconditioned conjugate gradient method with optimal preconditioner). The results apply within a fairly abstract framework which covers a variety of model problems. (C) 2020 Elsevier Ltd. All rights reserved.
Más información
Título según WOS: | A short note on plain convergence of adaptive least-squares finite element methods |
Título de la Revista: | COMPUTERS & MATHEMATICS WITH APPLICATIONS |
Volumen: | 80 |
Número: | 6 |
Editorial: | PERGAMON-ELSEVIER SCIENCE LTD |
Fecha de publicación: | 2020 |
Página de inicio: | 1619 |
Página final: | 1632 |
DOI: |
10.1016/J.CAMWA.2020.07.022 |
Notas: | ISI |