Analysis of Backward Euler Primal DPG Methods

Fuhrer, Thomas; Heuer, Norbert; Karkulik, Michael

Abstract

We analyze backward Euler time stepping schemes for a primal DPG formulation of a class of parabolic problems. Optimal error estimates are shown in a natural norm and in the L-2 norm of the field variable. For the heat equation the solution of our primal DPG formulation equals the solution of a standard Galerkin scheme and, thus, optimal error bounds are found in the literature. In the presence of advection and reaction terms, however, the latter identity is not valid anymore and the analysis of optimal error bounds requires to resort to elliptic projection operators. It is essential that these operators be projections with respect to the spatial part of the PDE, as in standard Galerkin schemes, and not with respect to the full PDE at a time step, as done previously.

Más información

Título según WOS: ID WOS:000733331000004 Not found in local WOS DB
Título de la Revista: COMPUTATIONAL METHODS IN APPLIED MATHEMATICS
Volumen: 21
Número: 4
Editorial: WALTER DE GRUYTER GMBH
Fecha de publicación: 2021
Página de inicio: 811
Página final: 826
DOI:

10.1515/cmam-2021-0056

Notas: ISI