Ultraweak formulation of linear PDEs in nondivergence form and DPG approximation
Abstract
We develop and analyze an ultraweak formulation of linear PDEs in nondivergence form where the coefficients satisfy the Cordes condition. Based on the ultraweak formulation we propose discontinuous Petrov-Galerkin (DPG) methods. We investigate Fortin operators for the fully discrete schemes and provide a posteriori estimators for the methods under consideration. Numerical experiments are presented in the case of uniform and adaptive mesh-refinement. (C) 2020 Elsevier Ltd. All rights reserved.
Más información
Título según WOS: | Ultraweak formulation of linear PDEs in nondivergence form and DPG approximation |
Título de la Revista: | COMPUTERS & MATHEMATICS WITH APPLICATIONS |
Volumen: | 95 |
Editorial: | PERGAMON-ELSEVIER SCIENCE LTD |
Fecha de publicación: | 2021 |
Página de inicio: | 67 |
Página final: | 84 |
DOI: |
10.1016/j.camwa.2020.07.007 |
Notas: | ISI |