MULTILEVEL DECOMPOSITIONS AND NORMS FOR NEGATIVE ORDER SOBOLEV SPACES
Abstract
We consider multilevel decompositions of piecewise constants on simplicial meshes that are stable in H-s for s is an element of (0, 1). Proofs are given in the case of uniformly and locally refined meshes. Our findings can be applied to define local multilevel diagonal preconditioners that lead to bounded condition numbers (independent of the mesh-sizes and levels) and have optimal computational complexity. Furthermore, we discuss multilevel norms based on local (quasi-)projection operators that allow the efficient evaluation of negative order Sobolev norms. Numerical examples and a discussion on several extensions and applications conclude this article.
Más información
Título según WOS: | MULTILEVEL DECOMPOSITIONS AND NORMS FOR NEGATIVE ORDER SOBOLEV SPACES |
Título de la Revista: | MATHEMATICS OF COMPUTATION |
Volumen: | 91 |
Número: | 333 |
Editorial: | AMER MATHEMATICAL SOC |
Fecha de publicación: | 2022 |
Página de inicio: | 183 |
Página final: | 218 |
DOI: |
10.1090/MCOM/3674 |
Notas: | ISI |