MULTILEVEL DECOMPOSITIONS AND NORMS FOR NEGATIVE ORDER SOBOLEV SPACES

Fuhrer, Thomas

Abstract

We consider multilevel decompositions of piecewise constants on simplicial meshes that are stable in H-s for s is an element of (0, 1). Proofs are given in the case of uniformly and locally refined meshes. Our findings can be applied to define local multilevel diagonal preconditioners that lead to bounded condition numbers (independent of the mesh-sizes and levels) and have optimal computational complexity. Furthermore, we discuss multilevel norms based on local (quasi-)projection operators that allow the efficient evaluation of negative order Sobolev norms. Numerical examples and a discussion on several extensions and applications conclude this article.

Más información

Título según WOS: MULTILEVEL DECOMPOSITIONS AND NORMS FOR NEGATIVE ORDER SOBOLEV SPACES
Título de la Revista: MATHEMATICS OF COMPUTATION
Volumen: 91
Número: 333
Editorial: AMER MATHEMATICAL SOC
Fecha de publicación: 2022
Página de inicio: 183
Página final: 218
DOI:

10.1090/MCOM/3674

Notas: ISI