Weyl expansion of a circle billiard in a magnetic field
Abstract
We compute the high orders of the Weyl expansion for the heat kernel of a circle billiard in the presence of a uniform and perpendicular magnetic field. It is shown, in accordance with a conjecture made in Narevich et al (1998 J. Phys. A: Math. Gen. 31 4277), that some terms of this expansion can be identified with those of the Weyl expansion of a semi-infinite cylinder. The boundary correction to the Landau diamagnetic susceptibility of a non-degenerate electron gas in the billiard is determined.
Más información
| Título según WOS: | ID WOS:000080541800003 Not found in local WOS DB | 
| Título de la Revista: | JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 
| Volumen: | 32 | 
| Número: | 19 | 
| Editorial: | IOP PUBLISHING LTD | 
| Fecha de publicación: | 1999 | 
| Página de inicio: | L227 | 
| Página final: | L230 | 
| DOI: | 
 10.1088/0305-4470/32/19/103  | 
| Notas: | ISI |