Weyl expansion of a circle billiard in a magnetic field

Narevich, R; Spehner, D

Abstract

We compute the high orders of the Weyl expansion for the heat kernel of a circle billiard in the presence of a uniform and perpendicular magnetic field. It is shown, in accordance with a conjecture made in Narevich et al (1998 J. Phys. A: Math. Gen. 31 4277), that some terms of this expansion can be identified with those of the Weyl expansion of a semi-infinite cylinder. The boundary correction to the Landau diamagnetic susceptibility of a non-degenerate electron gas in the billiard is determined.

Más información

Título según WOS: ID WOS:000080541800003 Not found in local WOS DB
Título de la Revista: JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL
Volumen: 32
Número: 19
Editorial: IOP PUBLISHING LTD
Fecha de publicación: 1999
Página de inicio: L227
Página final: L230
DOI:

10.1088/0305-4470/32/19/103

Notas: ISI