A k-tableau characterization of k-Schur functions
Abstract
We study k-Schur functions characterized by k-tableaux, proving combinatorial properties such as a k-Pieri rule and a k-conjugation. This new approach relies on developing the theory of k-tableaux, and includes the introduction of a weight-permuting involution on these tableaux that generalizes the Bender-Knuth involution. This work lays the groundwork needed to prove that the set of k-Schur Littlewood-Richardson coefficients contains the 3-point Gromov-Witten invariants; structure constants for the quantum cohomology ring. © 2007 Elsevier Inc. All rights reserved.
Más información
Título según WOS: | A k-tableau characterization of k-Schur functions |
Título según SCOPUS: | A k-tableau characterization of k-Schur functions |
Título de la Revista: | ADVANCES IN MATHEMATICS |
Volumen: | 213 |
Número: | 1 |
Editorial: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
Fecha de publicación: | 2007 |
Página de inicio: | 183 |
Página final: | 204 |
Idioma: | English |
URL: | http://linkinghub.elsevier.com/retrieve/pii/S0001870806003914 |
DOI: |
10.1016/j.aim.2006.12.005 |
Notas: | ISI, SCOPUS |