A k-tableau characterization of k-Schur functions

Lapointe, L; Morse J.

Abstract

We study k-Schur functions characterized by k-tableaux, proving combinatorial properties such as a k-Pieri rule and a k-conjugation. This new approach relies on developing the theory of k-tableaux, and includes the introduction of a weight-permuting involution on these tableaux that generalizes the Bender-Knuth involution. This work lays the groundwork needed to prove that the set of k-Schur Littlewood-Richardson coefficients contains the 3-point Gromov-Witten invariants; structure constants for the quantum cohomology ring. © 2007 Elsevier Inc. All rights reserved.

Más información

Título según WOS: A k-tableau characterization of k-Schur functions
Título según SCOPUS: A k-tableau characterization of k-Schur functions
Título de la Revista: ADVANCES IN MATHEMATICS
Volumen: 213
Número: 1
Editorial: ACADEMIC PRESS INC ELSEVIER SCIENCE
Fecha de publicación: 2007
Página de inicio: 183
Página final: 204
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0001870806003914
DOI:

10.1016/j.aim.2006.12.005

Notas: ISI, SCOPUS